Classification of developmental disorders from speech signals using submodular feature selection
نویسندگان
چکیده
We present our system for the Interspeech 2013 Computational Paralinguistics Autism Sub-challenge. Our contribution focuses on improving classification accuracy of developmental disorders by applying a novel feature selection technique to the rich set of acoustic-prosodic features provided for this purpose. Our feature selection approach is based on submodular function optimization. We demonstrate significant improvements over systems using the full feature set and over a standard feature selection approach. Our final system outperforms the official Challenge baseline system significantly on the development set for both classification tasks, and on the test set for the Typicality task. Finally, we analyze the subselected features and identify the most important ones.
منابع مشابه
A Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملDiagnosis of Parkinson’s Disease in Human Using Voice Signals
A full investigation into the features extracted from voice signals of people with and without Parkinson’s disease was performed. A total of 31 people with and without the disease participated in the data collection phase. Their voice signals were recorded and processed. The relevant features were then extracted. A variety of feature selection methods have been utilized resulting in a good perf...
متن کاملA Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013